Pruned Neural Networks for Regression
نویسندگان
چکیده
Neural networks have been widely used as a tool for regression. They are capable of approximating any function and they do not require any assumption about the distribution of the data. The most commonly used architectures for regression are the feedforward neural networks with one or more hidden layers. In this paper, we present a network pruning algorithm which determines the number of units in the input and hidden layers of the networks. We compare the performance of the pruned networks to four regression methods namely, linear regression (LR), Naive Bayes (NB), k-nearest-neighbor (kNN), and a decision tree predictor M5 0. On 32 publicly available data sets tested, the neural network method outperforms NB and kNN if the prediction errors are computed in terms of the root mean squared errors. Under this measurement metric, it also performs as well as LR and M5 0. On the other hand, using the mean absolute error as the measurement metric, the neural network method outperforms all four other regression methods.
منابع مشابه
An Approach of Artificial Neural Networks Modeling Based on Fuzzy Regression for Forecasting Purposes
In this paper, a new approach of modeling for Artificial Neural Networks (ANNs) models based on the concepts of fuzzy regression is proposed. For this purpose, we reformulated ANN model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ANN models. Hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility for forecas...
متن کاملEstimation of Industrial Production Costs, Using Regression Analysis, Neural Networks or Hybrid Neural - Regression Method?
Estimation (Forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. Thus, accuracy of the estimation is highly desirable. Hibrid Regression Neural Network is an approach proposed in this paper to obtain better fitness in comparison with Regression Analysis and the Neural Network methods. Comparing the estimated resul...
متن کاملExtracting Rules from Pruned Neural Networks for Breast Cancer Diagnosis
A new algorithm for neural network pruning is presented. Using this algorithm, networks with small number of connections and high accuracy rates for breast cancer diagnosis are obtained. We will then describe how rules can be extracted from a pruned network by considering only a nite number of hidden unit activation values. The accuracy of the extracted rules is as high as the accuracy of the p...
متن کاملEvolving fuzzy optimally pruned extreme learning machine for regression problems
This paper proposes an approach to the identification of evolving fuzzy Takagi–Sugeno systems based on the optimally pruned extreme learning machine (OP-ELM) methodology. First, we describe ELM, a simple yet accurate learning algorithm for training single-hidden layer feed-forward artificial neural networks with random hidden neurons. We then describe the OP-ELM methodology for building ELM mod...
متن کاملA Dversarial R Obustness of P Runed N Eural N Etworks
Deep neural network pruning forms a compressed network by discarding “unimportant” weights or filters. Standard evaluation metrics have shown their remarkable speedup and prediction accuracy in test time, but their adversarial robustness remains unexplored even though it is an important security feature in deployment. We study the robustness of pruned neural networks under adversarial attacks. ...
متن کامل